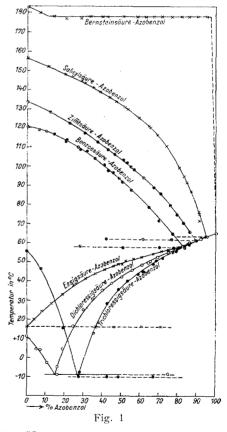
Über den Einfluß von Substitution in den Komponenten binärer Lösungsgleichgewichte

XLVIII. Mitteilung

Die binären Systeme von Azobenzol mit Säuren

Von

Robert Kremann und Karl Zechner


Aus dem physikalisch-chemischen Institut der Universität Graz (Mit 1 Textfigur)

(Vorgelegt in der Sitzung am 30. April 1925)

Azobenzol gibt, abgesehen von einer präparativ aufgefundenen Verbindung mit Benzol, auf Grund von Zustandsdiagrammen weder

mit Kohlenwasserstoffen² noch, wie wir feststellen konnten, mit Phenolen³ Verbindungen festen Zustande. Wir haben im weiteren durch Aufnahme entsprechender Zustandsdiagramme das gegenseitige Verhalten von Säuren Azobenzol gegenüber studiert, in der Erwägung, daß in diesen Systemen der totale Affinitätsunterschied größer sein würde, als in den oberwähnten Systemen und somit möglicherweise Schmelzen von Azobenzol und Säuren Verbindungen im Zustande abscheiden festen wiirden

Wie man aus den in den Tabellen I bis VII wiedergegebenen Versuchsergebnissen, die in Fig. 1 graphisch dargestellt sind, ersieht, gibt Azobenzol weder mit Benzoesäure, Zimmtsäure, Salizylsäure, Bernsteinsäure, Essigsäure, noch mit Dioder Trichloressigsäure Verbindungen im festen Zustande. Auch hier bestehen die Zustandsdiagramme jeweils aus den Löslichkeitskurven der beiden Komponenten.

¹ Schmidt, Ber., 5, 1106, 1872.

² Levi, daselbst, 19, 1625, 1886; Garelli und Calzolari, Gaz. chim. ital., 29, II., 1890; Beck, Zeitschr. f. phys. Chem., 48, 652, 1904; Pascal und Normand, Bull. Soc. chim. (4) 53, 137 und 878, 1913; Buquet, Cr., 149, 857, 1909.

³ Siehe XLVI. Mitt. dieser Folge. Monatshefte für Chemie, 45, 305, 1924.

Im System Azobenzol-Bernsteinsäure treten im Gebiet von 11 bis zirka $97^{\circ}/_{0}$ Azobenzol zwei flüssige Schichten auf, die bei 178° mit fester Bernsteinsäure im Gleichgewicht sind. Die Lage der Eutektika ist folgende: Im System Azobenzol mit:

Benzoesäure	bei	58°	und	$83^{0}/_{0}$ Az	zobenzol
Zimmtsäure	>>	62	»	90	>>
Salizylsäure	»	63.5	,	95	»
Bernsteinsäure	»	65°	»	nahe 100	»
Essigsäure	>>	16	>>	zirka $1^{0/6}$	Azobenzol
Dichloressigsäure	>-	9	>>	$15^{0}/_{0}$ Az	zobenzol
Trichloressigsäure	>-	10	>-	27	»

Tabelle I.
System Azobenzol—Benzoesäure.

a)	Menge	Azc	benzol	3.08 g.
	Zusatz	von	Benzoe	säure.

b) Menge: Benzoesäure 3:39 g. Zusatz von Azobenzol.

Gewichtsprozent Azobenzol	Temp. der prim. Krystall.	Gewichtsprozent Azobenzol	Temp. der prim. Krystall.
100.0	65	0.0	121
89.3	62	10.0	118
$83 \cdot 5$	582	20:4	11:3
$77 \cdot 2$	651	28:0	1021
$69 \cdot 7$	721	34.9	109
63 · 8	79	43:0	98
$54 \cdot 9$	88	$50 \cdot 2$	921
50.4	921		
48.9	94		

c) Menge: Benzoesäure 3:00 g. Zusatz von Azobenzol.

Gewichtsprozent Azobenzol	* Temp. der prim. Krystall
0.0	121
$6 \cdot 3$	119
14.3	117
21-1	114
26.8	1101
31.8	1081
36:1	1()41
$40 \cdot 2$	1011
$45 \cdot 5$	971
50.0	$92 \cdot 51$

¹ Sekundäre eutektische Krystallisation bei 58°.

² Gleichzeitig sekundüre eutektische Krystallisation.

Tabelle II. System Azobenzol—Salizylsäure.

a) Menge: Salizylsäure 3:36 g. Zusatz von Azobenzol.

b) Menge: Azobenzol 4.54 g. Zusatz von Salizylsäure.

Gewichtsprozent Azobenzol	Temp. der prim. Krystall.	Gewichtsprozent Azobenzol	Temp. der prim. Krystall.
0.0	156	100.0	65
11.3	152	92.3	76
20.1	148	84.6	92
30.7	1431	80.4	991
38.7	139	$74 \cdot 2$	1101
$46 \cdot 6$	1341	$65 \cdot 3$	120
$52 \cdot 1$	1311	$52 \cdot 9$	1301

c) Menge: Salizylsäure 2.0 g. Zusatz von Salizylsäure.

Gewichtsprozent Azobenzol	Temp. der prim. Krystall.
100.0	65
$95 \cdot 2$	$63 \cdot 5$
80.8	75
87.0	87
83 · 3	95
74.1	110
69.0	116
$64 \cdot 5$	121
58.8	125
$52 \cdot 2$	131
47.6	134
43.5	136
38.5	139
$34 \cdot 5$	141
$28\cdot6$	145

¹ Sekundäre eutektische Krystallisation bei 63.5°.

Tabelle III. System Azobenzol—Zimmtsäure.

a) Menge: Azobenzol 4:41 g. Zusatz von Zimmtsäure.

Gewichtsprozent	Temp. der
Azobenzol	prim. Krystall.
100.0	65
86.7	66
$76 \cdot 2$	801
70.3	86
$67 \cdot 2$	89
61.2	941
56.7	98
52.7	1021
$42 \cdot 6$	1091

¹ Sekundäre eutektische Krystallisation bei 62°.

(b)	Menge:	Zimmtsäure	3·40 g.	Zusatz	von	Azobenzol.
-----	--------	------------	---------	--------	-----	------------

Gewichtsprozent Azobenzol	Temp. der prim. Krystall.
0.0	133
11.8	128
$22 \cdot 7$	$122 \cdot 5$
$30 \cdot 2$	117:5
37:5	113.01
45.8	1061
50.8	103.5
55.3	1001

c) Menge: Azobenzol 3:00 g. Zusatz von Zimmtsäure.

Gewichtsprozent Azobenzol	Temp. der prim. Krysta
100.0	65
95:0	1
90.7	621
86.8	621
83 · 2	711
78.8	751

⁴ Sekundäre eutektische Krystallisation bei 62°.

Tabelle IV.

System: Azobenzol—Essigsäure.

a) Menge: Essigsäure 3.87 g. Zusatz von Azobenzol.

Gewichtsprozent Azobenzol	Temp. der prim. Krystall.
0.0	17
4:5	20
8:3	241
13:4	28
19:2	$33 \cdot 5$
25 · 1	38.5
30.0	41:5
36:5	441
41.7	$46 \cdot 5$
46.5	481
50.6	49

¹ Sekundäre eutektische Krystallisation bei 16°.

b) Menge: Azobenzol 3:40 g. Zusatz von Essigsäure.

	9	•	
Gewichtsprozent Azobenzol	Temp. der prim. Krystall.	Gewichtsprozent Azobenzol	Temp. der prim. Krystall.
100.0	65	71.0	$55 \cdot 51$
$95 \cdot 2$	63.5	66.9	54.0
90.0	61.5	60.9	53.01
$84 \cdot 6$	$59 \cdot 5$	56.7	52.0
79.8	58	$52 \cdot 5$	51.0
$74 \cdot 6$	56	48.7	49.01

¹ Sekundäre eutektische Krystallisation bei 16°.

Tabelle V.

System Dichloressigsäure—Azobenzol.

a) Menge: Dichloressigsäure 7.7 g. Zusatz von Azobenzol.

Gewichtsprozent Azobenzol	Temp. der prim. Krystall.
0.0	+ 11
7.0	+ 4
$16 \cdot 4$	51

b) Menge: Azobenzol 3.0 g. Zusatz von Dichloressigsaure.

Gewichtsprozent Azobenzol	Temp. der prim. Krystall.	
100.0	65.0	
$92 \cdot 3$	62	
74.5	551	
$64 \cdot 6$	50	

- 1 Sekundäre eutektische Krystallisation bei 9°.
- c) Menge: Dichloressigsäure 5.9 g. Zusatz von Azobenzol.

d) Menge: Azobenzol 3:35 g. Zusatz von Dichloressigsäure.

Gewichtsprozent Azobenzol	Temp. der prim. Krystall.	Gewichtsprozent Azobenzol	Temp. der prim. Krystall.
0.0	11	100.0	65
$5 \cdot 4$	4.5	$94 \cdot 9$	63
10.7	2.5	85 · 7	$60 \cdot 5$
19.4	+4.5	$79 \cdot 4$	58
$24 \cdot 5$	16	73.8	55
29.8	25	69 · 1	$52 \cdot 5$
35.1	30.5	$65 \cdot 1$	50
40.5	35.5	60.8	48.5
$45 \cdot 0$	39	$56 \cdot 2$	46
$50 \cdot 4$	42		

Tabelle VI.

System Azobenzol—Trichloressigsäure.

Menge: Trichloressigsäure 3.95 g. Zusatz von Azobenzol.

Gewichtsprozent Azobenzol	Temp. der prim. Krystall.	
0.0	55.5	
$7 \cdot 7$	46	
19.0	15	
28.3	8	
$35 \cdot 7$	+ 13	
$42 \cdot 7$	281	
48.6	361	

¹ Sekundäre eutektische Krystallisation bei - 10°.

b) Menge: Azobenzol 4:36 g. Zusatz von Trichloressigsäure.

tsprozent Azobenzol	Temp. der prim. Krysta		
100.0	65		
90.0	62		
85.7	59		
77.5	551		
68.4	51		
$58 \cdot 9$	441		
53 · 1	40		
48.0	361		

c) Menge: Azobenzol 2:50 g. Zusatz von Trichloressigsäure.

Gewichtsprozent Azobenzol	Temp. der prim. Krystall.	
79.1	55.5	
72:3	52	
67:3	491	
$61 \cdot 5$	45	

⁴ Sekundäre eutektische Krystallisation bei -- 10°.

Tabelle VII.
System Bernsteinsäure--Azobenzol.

a) Menge: Bernsteinsäure 2:76 g. Zusatz von Azobenzol.

Gewichtsprozent Azobenzol	Temp. der prim. Krystall.	Gewichtsprozent Azobenzol	Temp. der prim. Krystall.
0.0	183	$33 \cdot 2$	178
$6 \cdot 4$	180	$39 \cdot 9$	1781
14.3	178	42.5	1781
20.9	1771	20.4	177
$28 \cdot 3$	1771	52.7	1781

b) Menge: Azobenzol 2.97 g. Zusatz von Bernsteinsäure.

Gewichtsprozent Azobenzol	Temp. der prim. Krystall.	Gewichtsprozent Azobenzol	Temp. der prim. Krystall.
100.0	65	71.6	178
$95 \cdot 7$	178	67 · 7	1781
91.2	178	62.8	178
85.8	178	58.4	1781
82.0	1781	56.0	1781
80.9	178	$51 \cdot 2$	1781
$76 \cdot 9$	1781		

¹ Sekundäre eutektische Krystallisation bei 65°.